Pembuktian Teorema Binomial dengan Induksi Matematika


dengan n dan r adalah bilangan bulat positif dan r ≤ n. Rumus ini dapat digunakan untuk mempermudah penghitungan nilai kombinasi yang besar dengan menuliskannya ke dalam kombinasi yang lebih kecil: Jika nilai kombinasi r dari n objek diketahui, maka nilai kombinasi r dari n + 1 objek dapat dihitung untuk semua r sedemikian sehingga 0 < r ≤ n.
Segitiga Pascal, seperti yang ditunjukkan oleh gambar di bawah ini, merupakan versi geometris dari rumus Pascal.

Setiap bilangan pada segitiga di atas sama dengan kombinasi r dari n objek. Rumus Pascal menyatakan bahwa bilangan pada baris r dan kolom n + 1 sama dengan bilangan pada baris n kolom r – 1 ditambah dengan bilangan pada baris n kolom r. Hal ini berarti, bilangan yang ada di dalam segitiga Pascal sama dengan penjumlahan dari dua bilangan yang terletak tepat di sebelah kiri-atas dan kanan-atasnya. Selanjutnya, bagaimana kita membuktikan rumus Pascal tersebut? Berikut ini pembuktian rumus Pascal dengan pendekatan kombinasi.
Bukti Misalkan n dan r adalah bilangan bulat positif dengan r ≤ n dan S adalah himpunan yang memiliki n + 1 anggota, atau S = (x1, x2, x3, … , xn + 1}. Sehingga, himpunanS sama dengan gabungan dari {x1, x2, x3, … , xn} dan {xn + 1}. Selanjutnya, semua himpunan bagian dari S yang bilangan kardinalnya sama dengan r dapat dibagi menjadi dua kelompok: kelompok pertama merupakan himpunan bagian yang memuat xn + 1, dan kelompok yang lain merupakan himpunan bagian yang tidak memuat xn + 1.
Apabila suatu himpunan bagian dari S memuat xn – 1, maka himpunan bagian tersebut akan memuat r – 1 anggota dari {x1, x2, x3, … , xn}. Jika himpunan bagian dari S tidak memuat xn – 1, maka himpunan bagian tersebut akan memuat r anggota dari {x1, x2, x3, … ,xn}.

Karena banyaknya himpunan bagian S yang berukuran r sama dengan kombinasi r dari n+ 1, maka

Pembuktian Teorema Binomial dengan Induksi Matematika
Misalkan a dan b adalah sembarang bilangan real, dan P(n) adalah pernyataan

Tunjukkan bahwa P(0) benar: Untuk n = 0, teorema binomial menyatakan bahwa:

Tetapi ruas kirinya adalah (a + b)0 = 1, dan ruas kanannya adalah

Sehingga P(0) benar.
Tunjukkan bahwa untuk setiap bilangan bulat m ≥ 0, jika P(m) benar, makaP(m + 1) benar: Misalkan diberikan m bilangan bulat dengan m ≥ 0 dan P(m) benar. Sehingga,

Selanjutnya, kita akan menunjukkan bahwa P(m + 1) benar:

Sekarang, berdasarkan definisi pangkat (m + 1),

Sehingga dengan substitusi dari hipotesis induktif,

Selanjutnya, kita transformasikan penjumlahan kedua pada ruas kanan di atas dengan mengubah variabel j = k + 1. Ketika k = 0, maka j = 1. Ketika k = m, maka j = m + 1. Karenak = j – 1, maka

Sehingga, penjumlahan kedua pada ruas kanan tersebut akan sama dengan,

Karena dalam penjumlahan tersebut j adalah variabel semu, maka kita dapat mengubah jmenjadi k asalkan pengubahan tersebut untuk semua j yang muncul dalam penjumlahan tersebut.

Sehingga,

Berdasarkan rumus Pascal,

Sehingga,

Semoga bermanfaat,
Tidak ada komentar:
Posting Komentar